ZAŠTITA OD INFEKCIJA DOJENJEM

Izeta SOFTIĆ, Nedima ATIĆ

Ishrana novorođenčeta i dojenčeta majčinim mlijekom ima niz prednosti u odnosu na vještakšku ishranu. Majčino mlijeko obezbeđuje imunološku zaštitu i razvoj saprofitne flore u crijevima, a aktivnom stimulacijom nezrelog imunološkog sistema novorođenčeta bioaktivnim faktorima povećava otpornost na infekcije. Objašnjen je mehanizam protektivnog djelovanja majčinog mlijeka u prevenciji sepsa, infekcije respratornog, gastrointestinalnog i urinarnog sistema. Poznavanje faktora prisutnih u majčnom mlijeku kao i mehanizama zaštite od infekcija značajno je za promociju zdravlja ove veoma osjetljive populacije. To su veoma važni argumenti koje treba koristiti u podršci dojenja kao najboljeg načina ishrane novorođenčeta.

Ključne riječi: Dojenje • Zaštita organizma • Infekcije

Uvod

Zadnju deceniju autorii ovog članka intenzivno rade na promociji prirodne ishrane dojenčadi kao veoma važnom segmentu promocije zdravlja djece, a također sastavnom dijelu terapijskog pristupa ukoliko do bolesti dođe. Polazeći od činjenice da je novorođenče nezrelo sa imunološkog aspekta, znajući da su infekcije u najčešćem procentu uzrok morbiditeta i mortaliteta u najranijem periodu, potrebno je promovirati dojenje kao vrlo značajan faktor u njihovoj preventiji. Promocija dojenja će biti uspješnija ukoliko se potencira značaj majčinog mlijeka u jačanju imunog sistema novorođenčeta u periodu kada je njegova nezrelost najizraženija.
Laktacija je karakteristika sisara koja predstavlja njihovu sposobnost da proizведu idealnu hranu za mladunče. To je njihova evolucijska prednost nad ostalim vrstama i značajna je za njihovo preživljavanje. Majčino mlijeko je ekstrauterina veza između majke i novorođenčeta slična onoj koja je ranije postojala preko placentne između majke i fetusa (1). To je bioaktivna supstanca prilagođena djetetu koja ima čitav niz odbrambenih mehanizama značajnih za jačanje njegovog imunog sistema. Sa ciljem da se napravi adekvatna zamjena za majčino mlijeko, otkrivene su mnoge nje-gove komponente koje pokazuju da je idealna hrana za ljudsku vrstu (2). Način ishrane u novorođenčkom i dojenčakom periodu je odavno prepoznat kao značajna i odlučujući faktor u sprečavanju infekcija (3, 4, 5). Dojenje prevenira infekcije koje se dešavaju zbog različitih okolnosti (6), a udruženo je i odavno prepoznat kao značajan i odlučujući bioaktivna supstanca prilagođena djetetu za njihovo preživljavanje. Majčino mlijeco je u pitanju ishrana dojenčeta. Mnogo članaka o prednostima novorođenčka mlijeka. Putem kolostruma novorođenče prima lokalnu zaštitu intestinal-nog sistema, a sistemsku zaštitu je primilo transplacentarno. Kiselost u crijevima djeteta na prirodnjoj ishrani obezbjeđuje zaštitu od infekcija utičući na bakterijsku floru. Postoje klinički i eksperimentalni dokazi da majčino mlijeko može smanjiti povećanu sklonost obolijevanju u toku novorođenčakog i dojenčakovog perioda. Zaštitni faktori u majčinom mlijeku pasivno ili aktivno štite od štetnih uticaja okoline, tako da dojenčad na prirodnjoj ishrani imaju manje infekcija (11). To se ostvaruje kontro-lom bakterijske infekcije putem crijevne flore i komponentama imunog sistema majčinog mlijeka (12). Osnovne segmente imunog sistema majčinog mlijeka čine antimikrobeni, antiinflamatorni i imunomodulatorni faktori čija multifunkcionalna aktivnost doprinosi njegovoj nezamjenljivosti (13).

Antimikrobeni činici majčina mlijeka i njihova funkcija prikazani su u Tabeli 1. **Laktoferin** čini 15% od ukupnih proteina majčinog mlijeka. Ima mnogobrojne funkcije kao što su: baktericidna, antivirusa, antiinflamatorna i citokin modulirajuća. On blokira bakterijsku virulenciju tako što poremeti integritet vanjske membrane gdje je
smješten protein i interferira sa funkcijom igličastih organela, strukturu koju posjeduju mnogi patogeni kao što su: Shigella, Salmonella, Yersinia, Escherichia coli. Anti-bakterijska aktivnost laktoferina i transferina značajna je za širok spektar mikroorganizama (gram pozitivne i gram negativne bakterije, anaerobi i gljivice). Laktoferin ima veliki afinitet za željezo i na takav način smanjuje mogućnost bakterijama da ga koriste. Uloga laktoferina je usko vezana za ulogu transferina što omogućava bolju apsorpciju željeza kod djece na prirodnoj prehrani (14).

Lizozim je proteinski enzim poznat kao »nespecifični antimikrobni faktor«. Djeluje tako što ližira bakterijski čelijski zid i vezuje bakterijski lipopolisaharid, smanjujući endotoksični efekt bakterija. Oslabljene komponente čelijskog zida podstiču produkciju SİgA, aktivaciju makrofaga i na takav način čiste organizam od bakterija. Luče ga neutrofili i makrofazi. Može se naći u stolici dojenčeta na majčinom mlijeku, dok u stolici dojenčeta na vještačkoj ishrani nije prisutan.

Fibronektin je značajan za opsonizaciju patogenih mikroorganizama kao i privlačenje fagocita. Nizak nivo doprinosi sniženju funkcije fagocita kao i povećanju predispozicije za razvoj sepse.

Imunoglobulini su glikoproteini prisutni u serumu i tkivnim tečnostima. Zovu ih i antitijela zbog njihove sposobnosti da razaraju strane proteine. Njihova primarna uloga je vezivanje antigena. Majčino mlijeko sadrži sve klase imunoglobulina. Glavni imunoglobulin je sekretorni IgA koji djeluje u crijevima i respiratornom traktu. Specifičnost SIgA antitijela u majčinom mlijeku odražava majčine enteralne i respiratorne antigene obezbjedjujući imunološki nezrelom novorođenčetu zaštitu protiv patogena sa kojim je majka dolazila u kontakt. Oni preveniraju infekciju tako što blokiraju vezivanje mikroba za sluznicu, što predstavlja inicijalnu fazu kod infekcija koje ulaze putem sluznica i koje su većinom ulazna vrata infekcija kod novorođenčadi. Ovakav način odbrane od infekcija putem antitijela u majčinom mlijeku je poznat kao

<table>
<thead>
<tr>
<th>Činioci/Agents</th>
<th>Primarna funkcija/Primary functions</th>
<th>Sinergizam/Synergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laktoferin/Lactoferrin</td>
<td>Vezivanje željeza/Fe chelation</td>
<td>Sekretorni IgA/ Secretory IgA</td>
</tr>
<tr>
<td>Lizozim/Lysozyme</td>
<td>Razgradnja peptidoglikana/ Degrade peptidoglycans</td>
<td>Sekretorni IgA/ Secretory IgA</td>
</tr>
<tr>
<td>Fibronektin/Fibronectin</td>
<td>Opsonizacija/Opsonins</td>
<td>?</td>
</tr>
<tr>
<td>Sekretorni IgA/ Secretory IgA</td>
<td>Vezivanje antigena/Antigen binding</td>
<td>Laktoferin/Lactoferrin, Lizozim/Lysozyme</td>
</tr>
<tr>
<td>C3 komplement/ C3 Complement</td>
<td>Opsonizacija/Fragments are opsonins</td>
<td>Sekretorni IgA/ Secretory IgA, Lizozim/Lysozyme</td>
</tr>
<tr>
<td>Mucini/Mucins</td>
<td>Anti-rotavirus; receptor analog/ Anti-rotavirus; receptor analogues</td>
<td>-</td>
</tr>
<tr>
<td>Oligosaharidii/ Oligosaccharides</td>
<td>Receptor analog/Receptor analogues</td>
<td>-</td>
</tr>
<tr>
<td>Lipidi/Lipids</td>
<td>Inaktiviraju virus/Disrupt enveloped viruses</td>
<td>-</td>
</tr>
</tbody>
</table>
neinfiamatorna odbrana, za razliku od tkivne odbrane putem IgG antitijela kada nastaje inflamatorna odbrana uz potrošnju energije. Prevencija infekcija novorođenčeta majčinim mlijekom je jako efikasna jer štedi energiju prevenirajući infekt neinfiamatornim putem.

Visoka koncentracija laktoze i nedigestibilnih oligosaharida u majčinom mlijeku promovira rast Bifidobacterium sppecies i Lactobacillus sppecies tako da je to hrana koja ima ulogu prebiotika (selektivno stimulira rast saprofitnih bakterija u kolonu). Kao rezultat toga, stolica dojenčeta na prirodnoj ishrani se znatno razlikuje od stolice vještački hranjenog dojenčeta. Ona ima nizak pH, visoku koncentraciju laktata i acetata. Intestinalna kolonizacija sa Bifidobacterium sppecies i Lactobacillus sppecies ima ulogu barijere koja daje signal za maturaciju limfnog tkiva i balans je pro i anti inflamatornim citokinima. Na taj način se stvara zdrava interakcija između domaćina i mikroba koja je neophodna za regulaciju inflamatornog odgovora pri razvoju crijeva kod dojenčeta (19).

Ćelije su prisutne u majčinom mlijeku. U kolostrumu su prisutni leukociti u koncentraciji od nekoliko miliona ćelija/ml. To su makrofazi, polimorfonuklearni leukociti, T i B limfociti. Dominiraju makrofazi. Limfocita...
Broj limfocita i stimulacija mitogeni ma opada u toku drugog i trećeg mjeseca života dojenčeta (20).

Makrofazi u majčinom mlijeku su fagociti koji imaju sljedeće funkcije: fagocitoza mikroorganizama, ubijanje bakterija, produk cija komplementa, lizozima i laktoferina. Oni pojačavaju funkciju limfocita, a služe i kao skladište imunoglobulina. Djeluju na sinte zu i ekskreciju laktoperoksidaze i celularnog faktora rasta, kao i sazrijevanje intestinalnih enzima.

Polimorfonuklearni leukociti imaju primarnu funkciju u održanju tkiva dojke od bakterije. U kolostrumu su prisutni u ve likom broju i funkcija im je ubijanje bakterija i fagocitoza.

T limfociti su CD4 (helper-indukujući limfociti) i CD8 (supresor-citotoksički limfociti). Kolonizacija mliječne žlijezde u toku laktacije sa memorijskim T-ćelijama može biti mehanizam prenošenja majčinog imunološkog iskustva. Limfokini (heimijski faktori koje luče T limfociti) privlače makrofage na mjesto infekta i pri premaju ih za napad. Imunokompetentne čelije u majčinom mlijeku imaju sposobnost da prežive u gastrointestinalnom traktu novorođenčeta i luče bioaktivne faktore kao hormon rasta i cytokine koji migriraju kroz mukozu u sistemsku cirkulaciju. Čelije iz majčinog mlijeka potenciraju ne samo lokalni odgovor gastrointestinalnog trakta nego i sistemski imuni odgovor.

Antii inflamatorni faktori u majčinom mlijeku prikazani su u Tabeli 2.

<table>
<thead>
<tr>
<th>Tabela 2 Antiinflammatory factors in human milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faktori/Factors</td>
</tr>
<tr>
<td>Citoprotektivni/Citoprotectives</td>
</tr>
<tr>
<td>Epitelijalni faktori rasta/Epithelial growth factors</td>
</tr>
<tr>
<td>Faktori sazrijevanja/Maturational factors</td>
</tr>
<tr>
<td>Enzimi razgrađivači mediatora/Enzymes that degrade mediators</td>
</tr>
<tr>
<td>Hvatači enzima/Binders of enzymes</td>
</tr>
<tr>
<td>Modulatori leukocita/Modulators of leucocytes</td>
</tr>
<tr>
<td>Antioksidansi/Antioxidants</td>
</tr>
<tr>
<td>Enzimi razgrađivači mediatora/Enzymes that degrade mediators</td>
</tr>
</tbody>
</table>

Antiinflamatorni faktori u majčinom mlijeku iznose 10%.
Prostaglandini - PGE₂ i PGF₂ utiču na povećanje pritiska u mliječnim kanalima i mehanizam otpuštanja mlijeka. U aktivnoj formi dospijevaju do perifernih organa i utiču na njihovu funkciju. U gastrointestinalnom traktu imaju citoprotektivan učinak kao i uticaj na motilitet crijeva, tako da su učestalije stolice kod dojenčadi na prirodnoj ishrani rezultat dejstva prostaglandina.

Epitelijalni faktor rasta (EGF) stimulira proliferaciju epidermalnog i epitelijalnog tkiva. Može se naći u plazmi, pljuvački, urinu, mlijeku. Posebno je značajan za proliferaciju crijevne sluznice što znači da ima mitogenu aktivnost.

Kortizol utiče na sazrijevanje sluznice crijeva i tako doprinosi razrastivanju mukozne barijere u ranom dojenčakom periodu.

Enzimi razgradjuju inflamatorne mediatorove i na takav način preprekuju razvijanje upalnih procesa kao što je nekrotiziranog enterocolitis. Acetilhidrolaza koju producira leukociti prisutni u majčinom mlijeku razgrada faktor aktivacije trombocita (PAF) koji je odgovoran za nastanak upale crijevne sluznice.

Alfa-1-antihimotripsin i alfa-1-antritripsin su značajni za zaštitu mliječne žlijezde od lokalne proteolitije aktivnosti leukocita. Značajni su i za zaštitu od razaranja imunoglobulina i faktora rasta.

Alfa-tokoferol, beta-karoten i C vitamin imaju ulogu antioksidanasa. Značajni antioksidansi su i enzimi prisutni u majčinom mlijeku posebno u kolostrumu kao superokсидizmane i glutaz enzima peroksidaza kao antiinfektivna zaštita novorođenčeta (21).

Imunomodulatorni faktori majčinog mlijeka podstiču razvoj prirodnog i vakciniranog imuni odgovora na infekciju respirotoznom sincicijelnom virusom (23), virus specifičnu limfocitnu transformaciju, broj čelija ubica, nivo antitijela na Haemophilus influenzae tip B polisaharide, poliovirus i difterija toksoid. Nivo sekretornih IgA se povećava brže u toku prvih šest mjeseci kod dojenčadi koja isključivo doje u odnosu na dojenčad koja se vještački hrane. Immunomodulatori faktor rasta koji je pronadjen u signifikantnoj količini u majčinom mlijeku imaju imunomodulatorne i antivirale aktivnosti.

Citokini kao azimomodulatori prikazani su u Tabeli 3. U kontroli virusnih infekcija značajnu ulogu ima majčino mlijeko. Ona se ogleda u prisustvu antiinfekcioni antitijela na poliovirus, coxackievirus, echovirus, influenza virus, reovirus, respiratory syncytial virus, rotavirus i rhinovirus. Potvrđeno je da majčino mlijeko inhibira rast ovih virusa u kulturi tkiva. Izučavanja lipidnih komponenti masne frakcije majčinog mlijeka su pokazala da su nezasićene masne kiseline i monogliceridi odgovorni za nespecifične antivirale efekte.
Dojenče na majčinom mlijeku će pro-
ducirati veću koncentraciju alfa-interferona
kao odgovor na infekciju respiratornim sin-
cicijalnim virusom (23). Veća koncentracija
fibronectina kod novorođenčadi na prirodnoj
ishrani je zbog veće koncentracije tog pro-
teina u majčinom mlijeku (24).

Ćelije
u kolostrumu i zrelom mlijeku
moguće je da imaju ove antivirusne funkci-
je: neutrofili i makrofazi fagocitiraju viruse,
slično kao i bakterije i gljivice. Virus specifična
antitijela u mliječnoj žlijezdi su rezultat »mu-
cosa associated lymphoid tissue« sistema.

Interferon Y koji producira T limfociti
ima antivirusnu ulogu. Zbog nedostatka ant-
viralne terapije prisustvo sekretorne komponente IgA u
majčinom mlijeku je od većeg značaja nego u
slučaju bakterijske infekcije.

Dojenje i zaštita od infekcija

Zadnjih pedeset godina naučnici istražuju
odnos između ishrane dojenčeta i infektivnih
oboljenja. Istraživanje provedeno u Am-
nerici na nacionalnom nivou je pokazalo da
je 1971. godine samo 25% novorođenčadi
dojilo po rođenju, a 1984. godine 61% (25)
dok je u skandinavskim zemljama (26) sto-
pa dojenja visoka. U Tuzlanskom kantonu
stopa otpočinjanja dojenja novorođenčadi je
visoka (98.2%), ali brzo opada tako da sa šest
mjeseci isključivo doji svega 12% dojenčadi
(27).

Ipak, i tamo gdje je visoka stopa dojenja,
isključivo dojenje nije praksa sa učestalim
davanjem prelaktacione hrane i uvodenjem
dohrane sa 1 - 2 mjeseca (28). Mnoga
istraživanja su potvrdila da dojenje štiti od
infekcija, kao i od hospitalizacija. Globalna
procjena je da bi poštivanje preporuke o
ishrani dojenčeta smanjilo incidencu morbi-
diteta od ozbiljnih infekcija u dojenačkom
periodu (6). Dvostruka redukcija incidence
proliva kod dojenčadi ispod tri mjeseca
je utemeljena na odgovorima na

Programom Svjetske zdravstvene orga-
nizacije (SZO) za kontrolu proliva i akutnih
respiratornih bolesti, utemeljeni 1984.
godine, utvrđene su mjere za smanjenje
morbiditeta i mortaliteta od ovih oboljenja
primjenom aktivnosti, na prvom mjestu, na
polju ishrane, a potom vakcine, vodosnab-
dijevanja, higijenskih navika i zagađenosti
mikrokošta.

Majčino mlijeko značajno reducira neonatalnu
sepsu, infekcije respiratornog sistema,
upalu uha, proliv, nekrotizirajući enterokolitis
i infekciju urinarnog sistema (30).

Dojenje i zaštita od sepsa

Sepsa u novorođenačkom periodu je veliki
zdravstveni problem. Svake godine 30 mil-/iona novorođenčadi oboli od sepsa, a 1-2
miliona umire (31). Visoka zastupljenost

**Tabela 3 Citokini u majčinom mlijeku i njihova uloga
Table 3 Cytokines and functions in human milk**

<table>
<thead>
<tr>
<th>Citokini/Cytokines</th>
<th>Funkcija/Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interleukin-1-beta/Interleukin-1-beta</td>
<td>Aktivira T ćelije/Activates T cells</td>
</tr>
<tr>
<td>Interleukin 6/Interleukin 6</td>
<td>Pojačava stvaranje IgA/Enhances IgA production</td>
</tr>
<tr>
<td>Tumor nekrozis faktor-alfa/Tumor necrosis factor alpha</td>
<td>Pojačava produkciju sekretorne komponente/Enhances secretory component production</td>
</tr>
<tr>
<td>Transformirajući faktor rasta-beta/Transforming growth factor-beta</td>
<td>Povećava pretvorbu B ćelija u IgA/Enhances isotipe switching to IgA B cells</td>
</tr>
</tbody>
</table>

Softić, Atić • Zaštita od infekcija dojenjem
Sepse je posebno u nerazvijenim zemljama tako da 30% od ukupnog broja hospitaliziranih neonatusa zbog infekcija čini sepsa (32). Povećana permeabilnost gastrointestinalnog trakta kao i nezrelost sluznica razlog su povećanoj izloženosti novorođenčeta oboljevanju od sepse.

Najčešći uzročnici sepse su: *Escherichia coli*, *Klebsiella species*, *Staphylococcus aureus* i *Streptococcus pyogenes*. Incidenca neonatalne sepse sa *Streptocokom grupe B* je varijabilna kao i antimikrobna rezistencija (33). Mnogo rjeđe uzročnici sepse mogu biti virusi (34).

Dojenje štiti novorođenče od sistemske infekcije i u uslovima visokorizične populacije (35). Prisustvo epitelijalnog faktora rasta u majčinom mlijeku ubrzava razvoj sluznica kao barijere kao i doprinosu rastu i razvoju gastrointestinalnog trakta (36). Novorođenče koje je na isključivom dojenju dnevno primi 0.5-1 g sekretornog IgA, koji štiti od *Vibrio Cholerae*, *Escherichia coli*, *Campilobacter*, *Shigella*, *Gardia*, *Haemophilus influenzae*, *Pneumococcus infekcije*. SlAg antitijela štite novorođenče od mikroorganizama koje majka ima ili ih je rano imala. Na takav način dojenje modulira rano izlaganje novorođencaakog intestinalnog trakta (36). Novorođenčekje na isključivom dojenju dnevno primi 0.5-1 g sekretornog IgA, koji štiti od *Vibrio Cholerae*, *Escherichia coli*, *Campilobacter*, *Shigella*, *Gardia*, *Haemophilus influenzae*, *Pneumococcus infekcije*. SlAg antitijela štite novorođenče od mikroorganizama koje majka ima ili ih je rano imala. Na takav način dojenje modulira rano izlaganje novorođencaakog intestinalnog trakta (36). Novorođenček je na isključivom dojenju dnevno primi 0.5-1 g sekretornog IgA, koji štiti od *Vibrio Cholerae*, *Escherichia coli*, *Campilobacter*, *Shigella*, *Gardia*, *Haemophilus influenzae*, *Pneumococcus infekcije*. SlAg antitijela štite novorođenče od mikroorganizama koje majka ima ili ih je rano imala. Na takav način dojenje modulira rano izlaganje novorođencaakog intestinalnog trakta (36).
Zaštitni efekat dojenja od infekcije uha može se objasniti sa nekoliko aspekata. Različit položaj djeteta koje doji u odnosu na dijetu koje se hrani na bočicu tako da mehanička razlika položaja glave u toku ishrane može uticati na nastanak infekcije.

Sekretorni IgA koji blokira vezivanje Streptococcus pneumoniae i Haemophilus influenzae za retrofaringealne čelije također utiče na prevenciju nastanka upale uha. Visok nivo prostaglandina u majčinom mlijeku je od profilaktičkog značaja za nastanak upale uha (42). Isključivo dojenje četiri ili više mjeseci štiti dojenče od jedne ili više epizoda upale uha (43, 44, 45).

Dojenje i zaštita od proliva

Nezrelost intestinalnog trakta i odbrambenog sistema novorođenčeta značajni su u etiologiji diarealnog sindroma. Nekoliko aspekata razrijevanja gastrointestinalnog trakta, kao neovisnog organskog sistema poslije rođenja je jako bitan. Naprimjer, komponente mukoznog odbrambenog sistema su razvijene poslije četrdeset nedjelja gestacije ali ipak su potrebne promjene u smislu dozrijevanja za kompletan zaštitni efekat. Imuni odgovor (naprimjer IgA u intestinalnoj sekreciji) zahtijeva odgovarajuću namjenu gastrointestinalnog trakta mikroorganizmima koji će tek tada obezbijediti dokratnu antigenu stimulaciju za aktivaciju odbrambenih mehanizama. Nezrelost gastrointestinalnog mukoza odbrambenog sistema može se nadoknaditi pasivno zaštitnim materijama iz majčinskog mlijeka ali aktivnom stimulacijom maturacije odbrane sluznice gastrointestinalnog trakta u prevenciji infekcija i intestinalne inflamacije.

Stimulacijom trofičkim faktorima u majčinom mlijeku (citokini, hormoni) nespecifični i imunoški odbrambeni mehanizmi u crijevima razrijevaju i omogućuju zaštitu od patogenih mikroorganizama, kao i bakterijskih toksina koji uzrokuju bolest. Naprimjer, polimerazna IgA (pIgA) jedinstvena antitijela oblažu sluznicu crijeva i dosežu zaštitnu ulogu u crijevima nekoliko mjeseci po rođenju. Kolonizacija crijeva i stimulacija trofičkim faktorima iz majčinog mlijeka su neophodni da aktiviraju sekreciju zaštitnog nivoa pIgA. U toku perioda relativne pIgA deficijencije majčino mlijeko snabdijeva crijeva zaštitom količinom pIgA. U toku kolostralne faze laktacije majčino mlijeko snabdijeva novorođenče sa pIgA i sa povećanjem endogenog IgA potreba za IgA iz majčinskog mlijeka opada. Kolostralna faza laktacije poredeći sa zrelim majčinim mlijekom aktivno stimulira enterocite u zaštitni prevenciji od proliva. Specifična IgA antitijela protiv antigena iz majčine okoline nastala u »enteromamarnom sistemu« štite novorođenče od mikroflore iz majčinih crijeva. Prema tome, na crijevnu floru novorođenčeta utiče bliski kontakt sa majkom, kao i specifična pIgA antitijela iz majčinskog mlijeka.

Najčešći uzročnici proliva su: Rotavirus, Escherichia coli, Shigella, Campylobacter jejuni i Cryptosporidium. Povezanost ishrane i proliva u dojenačkom uzrastu potvrđena je u mnogim studijama. Isključivo dojenje, definisano kao ishrana samo majčinim mlijekom bez dodavanja bilo kakve tečnosti ili hrane, daje najviše zaštite od proliva dojenčad mlađoj od šest mjeseci, dok dojenje uz dohranu pruža djelimičnu zaštitu poredeći sa vještačkim ishranom (3). Istraživanja u Brazilu su pokazala da isključivo dojenje doprinosi nižem riziku od teških i dugotrajnih proliva (46). Metaanalizom SZO 35 studija iz 14 zemalja dokazana je 4 - 5 puta manja incidenca proliva kod djece koja su isključivo dojile u odnosu na vještački hranjenju dojenčad (6). Zaštitna uloga dojenja naročito od proliva dolazi do izražaja u prvom tromjesečju i opada sa povećanjem uzrasta dojenčeta što je potvrđeno istraživanjima (4, 47).

Prestanak dojenja u uzrastu od jednog mjeseca ima sasvim drugačije posljedice u odnosu na dojenče od devet mjeseci (48).
Novorođenčad na vještačkoj ishrani su lišena antiinfektivnog dejstva majčinog mlijeka, kao i njegove uloge u inhibiciji rasta patogena u crijevima što je posebno značajno za razvoj nekrotizirajućeg enterokolitisa kod prematurusa. (49). Nerazvijena površina sluznice crijeva olakšava vezivanje patogena kao i njihovu translokaciju što objašnjava i veću sklonost sepsi i intestinalnoj inflamaciji kod prematurusa. Imunoprotektivni faktori kao što su SIgA, protektivni citokini nisu dovoljno razvijeni što povećava inflamatorni odgovor na patogene i njihove toksine. Ta povećana sklonost inflamaciji sluznice crijeva kod prematurusa je uzrok učestalije pojave nekrotizirajućeg enterokolitisa u odnosu na donesenu novorođenčad.

Majčino mlijeko, posebno kolostrum ima visoku koncentraciju antiinflamatornih faktora (50). Ishrana izmuženim majčinim mlijekom može prevenirati ili ublažiti kliničku sliku oboljelih od nekrotizirajućeg enterokolitisa (51).

Baziran na gore navedenim studijama, program za kontrolu proliva SZO preporučuje: isključivo dojenje u toku prvih šest mjeseci, a upotreba čaja i vode u ovom periodu se ne preporučuje.

Dojenje i zaštita od infekcija urinarnog trakta

Nezrelost imunog sistema novorođenčeta kao i blizina rezervoara bakterija glavni su etiološki faktori nastanka urinarne infekcije naročito kod ženskog pola.

Zaštitna uloga dojenja od nastanka urinarnih infekcija potvrđena je u istraživanjima, tako da duže dojenje ide sa manjim rizikom za urinarne infekcije, što govori o dugoročnom mehanizmu odbrane. To je potvrda da je dojenje dio prirodne odbrane od urinarnih infekcija (52). Protektivni efekat dojenja posebno je izražen u prvih šest mjeseci života (53), jer crijeva dojenčeta na prirodnoj ishrani su kolo-nizirana sa bakterijama manje virulentnim, što je značajna zaštita od urinarnih infekcija (37, 54), tako da, ako se infekcija i dogodi, onda je praćena sa oskudnijom simptomatologijom. Lakoferin, koji ima antibakterijski efekat kao i SIgA, prisutan je u urinu dojenčeta na prirodnoj ishrani i predstavlja specifičnu zaštitu od urinarnih infekcija. Uz to, manja je mogućnost ascendentne infekcije kod novorođenčadi i dojenčadi koja su dojila zbog prisustva antihedezivnih oligosaharida u majčinom mlijeku (55). SIgA iz majčinog mlijeka imaju glavnu ulogu da štite novorođenče i dojenče od infekcija gdje patogeni ulaze putem sluznica u organizam (56), kao što je to slučaj kod urinarnih infekcija.

Zaključak

Pedijatrija danas 2007;3(1):33-45
Literatura

44. Sheard NF. Breastfeeding protects against otitis media.1993;51(9):275-7.

47. Softić I. Ishrana i obolijevanje dojenčeta od respiratornih i gastrointestinalnih infekcija u prvih šest mjeseci života. (Magistarski rad). Univerzitet u Tuzli Medicinski fakultet, 2006;51-52.

BREASTFEEDING PROTECTS AGAINST INFECTION

Izeta SOFTIĆ, Nedima ATIĆ

Department of Pediatrics
University Clinical Center, Tuzla, Bosnia and Herzegovina

Breastfeeding is superior to infant formula feeding, it has many advantages because it protects neonates against infections when the immune system is immature. Breast milk has special components that provide immunologic protection and a beneficial effect on intestinal flora. Through bioactive factors in human milk breastfeeding strengthens the host defences against: sepsis, respiratory, gastrointestinal and urinary infections. The protective effect of breastfeeding against infections is fundamental for breastfeeding support and promotion as the best food for neonates.

Key words: Breastfeeding • Host defence • Infections

Received: 01. 12. 2006.
Accepted: 16. 01. 2007.